CRM y SRM: principios clave para la seguridad en vuelos solo o en equipo.

Descubre la importancia del trabajo en equipo en la aviación, tanto en cabinas de dos pilotos como en el vuelo de piloto único, en este artículo. Desde los cambios en la tripulación hasta la necesidad del CRM, explora cómo el trabajo en equipo garantiza la seguridad y eficiencia en las operaciones aéreas.
Principios y prácticas para prevenir fallos y errores en sistemas complejos como la aviación.

La aviación es el ejemplo de un sistema complejo donde los errores pueden tener consecuencias catastróficas. La seguridad en la aviación es una cuestión crítica y ha sido el enfoque de intensos esfuerzos durante muchas décadas. En este artículo, discutiré algunos de los principios y prácticas que pueden ayudar a prevenir fallos. Es importante entender que los errores son inevitables. Los sistemas complejos siempre tienen margen para el error humano. En lugar de centrarse en eliminar completamente los errores lo que sería una tarea hercúlea, debemos centrarnos en minimizarlos y gestionarlos adecuadamente cuando ocurren. La gestión de los errores comienza con el diseño del sistema. Los sistemas deben ser diseñados de manera que minimicen las oportunidades de cometer errores. Esto puede incluir la simplificación de los procesos, la eliminación de pasos innecesarios, la mejora de la retroalimentación del sistema y la mejora de la formación y el entrenamiento de los pilotos. Los procesos que deben ser gestionados son dinámicos, ya que evolucionan continuamente (me refiero a procesos continuos), ya sea con o sin la intervención humana. Esta dinámica les otorga una evolutividad e inestabilidad que dificulta su control. A pesar de ello, siguen bajo control humano (por lo menos por ahora). Sin importar el grado de tecnificación o nivel de automatización, no pueden operar de manera óptima y prevenir riesgos catastróficos sin la presencia de un humano encargado de supervisar el sistema. Existen riesgos, y el concepto de riesgo debe entenderse aquí en dos sentidos: en primer lugar, el riesgo clásico de accidentes, presente en todos los sistemas. En segundo lugar, el riesgo personal de que el piloto cometa un error o se arriesgue debido a la falta de conocimientos. Esto refleja una frustración-miedo de no estar a la altura de sus responsabilidades, a no comprender una situación delicada o no contar con el tiempo suficiente para resolverlo. Otro aspecto crítico para prevenir fallos en sistemas complejos es la gestión del cambio. Los cambios en el sistema, ya sea en el diseño o en la operación, pueden crear nuevas oportunidades para errores humanos. Por lo tanto, es importante tener un proceso bien definido y riguroso para gestionar los cambios que se incorporen. Esto debe incluir una evaluación cuidadosa de los peligros y los riesgos asociados, la identificación de medidas de mitigación de peligros, la gestión de los índices de riesgos, la formación y el entrenamiento de los pilotos y técnicos en los nuevos procesos o tecnologías. Recordemos lo sucedido con Boeing. La controversia en torno al software de control de vuelo MCAS (Maneuvering Characteristics Augmentation System) de los aviones 737 NG y MAX, que ha sido objeto de críticas después de dos accidentes fatales de los modelos MAX en 2018 y 2019 con 346 víctimas mortales. Según los informes, Boeing se opuso a los requisitos adicionales de simulador para las variaciones en el software MCAS entre los modelos 737 NG y MAX. En lugar de eso, la compañía optó (siempre se trada de toma de decisiones) por no mencionar el MCAS en la documentación de entrenamiento de los pilotos, lo que significa que no estaban adecuadamente capacitados para manejar el sistema de control de vuelo. Se ha informado que la compañía quería evitar la necesidad de que los pilotos pasaran por un costoso y prolongado entrenamiento en simuladores de vuelo, lo que habría retrasado la entrega de los aviones MAX y aumentado los costos de producción. Esto ha llevado a críticas de que Boeing puso las ganancias por encima de la seguridad (mucha opción para refutar esto no existe) y que se apresuró a lanzar el modelo MAX al mercado sin la debida atención a los riesgos potenciales. Como resultado, los accidentes fatales de los modelos MAX han llevado a una mayor supervisión y regulación de la industria de la aviación, así como a cambios en la cultura y las prácticas de seguridad de la compañía Boeing, un poquito tarde y 346 victimás después. La comunicación es otro factor crítico en la prevención de fallos en sistemas complejos. Los sistemas complejos, a menudo, implican múltiples partes interesadas y equipos de trabajo. La comunicación clara y efectiva es fundamental para garantizar que todos los involucrados tengan una comprensión precisa de los procesos, las responsabilidades y las expectativas. Esto incluye la comunicación en tiempo real durante la operación del sistema, así como la documentación detallada y precisa de los procesos y procedimientos. La capacitación y el entrenamiento de los operadores también son fundamentales para prevenir fallos en sistemas complejos. Los operadores del sistema deben tener una comprensión clara de los procesos y procedimientos, así como de las capacidades y limitaciones del mismo. Además, deben estar entrenados en la toma de decisiones bajo presión y en la gestión de situaciones de emergencia. Los sistemas complejos son sistemas intrínsecamente peligrosos. Todos los sistemas, como la aviación, la medicina y la industria energética, son inherente e inevitablemente peligrosos por su propia naturaleza. La frecuencia de exposición al peligro a veces se puede cambiar, pero los procesos involucrados en el sistema son intrínseca e irreductiblemente peligrosos en sí mismos. Es la presencia de estos peligros lo que impulsa la creación de defensas que caracterizan a estos sistemas. Los sistemas complejos se defienden fuerte y exitosamente contra fallas. Las altas consecuencias del fracaso, con el tiempo, llevan a la construcción de múltiples capas de defensa. Estas defensas incluyen componentes técnicos obvios, como sistemas de respaldo y características de seguridad del equipo, así como componentes humanos, capacitación y conocimiento. También existen defensas organizacionales, institucionales y reglamentarias, como políticas y procedimientos, certificación y entrenamiento del equipo. El efecto de estas medidas es proporcionar una serie de escudos que normalmente previenen los accidentes en sistemas de alta complejidad. Una catástrofe requiere múltiples fallas No basta con fallas puntuales. La variedad de defensas funciona y las operaciones del sistema suelen ser exitosas. La falla catastrófica se manifiesta cuando pequeñas fallas aparentemente inocuas se combinan para crear oportunidades de accidentes sistémicos. Cada una de estas pequeñas fallas es necesaria para causar
Incursión en pista – el accidente en Lima, Perú

El viernes 18 noviembre 2022 un Airbus A320-200N de LATAM Chile, matrícula CC-BHB, que realizaba el vuelo LA-2213 de Lima a Juliaca (Perú) con 102 pasajeros y 6 tripulantes, se encontraba en carrera de despegue de la pista 16, aproximadamente a las 15:11 hora local (20:11 UTC), cuando varios camiones de bomberos con luces intermitentes y sirenas cruzaron la pista frente a la aeronave que aceleraba.
La percepción del riesgo

En las últimas semanas hubo accidentes que fueron de notoriedad pública, con videos y fotos circulando en medios de comunicación, como la imagen principal que ilustra esta nota. Pilotos que estaban realizando vuelos a baja altura y que colisionaron con antenas, otros realizaron vuelos poniendo en grave riesgo no solo su propia vida sino la de terceros. Terminando de escribir esta nota se suma el accidente en el festival aéreo en Dallas, EE.UU. por lo que este artículo está más que justificado: la percepción del riesgo.
Tormentas – La experiencia del LA-1325

El 27 de octubre próximo pasado un Airbus A320-200 de LATAM, matrícula CC-BAZ, realizaba el vuelo LA-1325 (salida 26 de octubre de 2022) desde Santiago (Chile) a Asunción (Paraguay) con 48 personas a bordo. Se encontraba en aproximación a la pista 20 de Asunción cuando la tripulación inicia el procedimiento de aproximación frustrada a unos 2400 pies MSL debido a la meteorología. La aeronave se desvió a Foz de Iguazú, PR (Brasil) para un aterrizaje seguro en la pista 33 unos 40 minutos después de haber decidido un go-around en Asunción. La aeronave permaneció en Foz de Iguazú durante aproximadamente tres horas veinte minutos. Posteriormente partió nuevamente por la pista 15 hacia el aeropuerto Silvio Pettirossi, de Asunción. En la aproximación a la pista 20 de Asunción, la aeronave voló a través de una tormenta eléctrica y sufrió daños en su radomo, pero continuó con el aterrizaje en la pista 20 de Asunción. No hubo heridos. La aerolínea informó que la aeronave se encontró con un clima severo en su ruta de vuelo y realizó un aterrizaje de emergencia en Asunción. Los pasajeros y la tripulación desembarcaron en buenas condiciones. Seguramente la mayoría habrá visto imágenes y videos tomados por los pasajeros, dignos de cualquier película de catástrofes en vuelo de la década de 70. Pero esta vez no era un éxito de Hollywood, sino la dramática realidad vivida por esas personas. Hasta aquí los datos. Cómo no hay información suficiente, ni oficial, para realizar un análisis, vamos a aprovechar esta oportunidad para recordar aspectos importantes de la meteorología, con los datos que sí tenemos sobre el vuelo. El Meteorological Terminal Air Report (METAR) de ese momento era el siguiente: SGAS 262122Z 20026G40KT 1500 +TSRA SCT010 OVC020 FEW040CB 24/21 Q1006= CODIGO EXPLICACIÓN SGAS 4 caracteres Identificación OACI del aeropuerto 262122Z Día 26; Hora: 21:22 UTC 20026G40KT Dirección del viento: 200 grados Velocidad: 26KT, Ráfagas: 40KT 1500 Visibilidad 1500 metros. +TSRA (+) Fuerte (TS) Tormenta (RA) Lluvia SCT010 (SCT) Dispersas (1/8 a 4/8) a 1,000 FT AGL OVC020 (OVC) Nublado (8/8) a 2,000 FT AGL FEW040CB (FEW) Pocas (1/8 a 2/8) a 4,000 FT AGL (CB) Cumulonimbus 24/21 Temperatura: 24 °C Punto de rocío: 21 °C Q1006 Ajuste del altímetro La presión del aire es de 1006 hpa. Cumulonimbus (Cb) Definición: Cumulonimbus es una nube pesada y densa de considerable extensión vertical en forma de torre, a menudo asociada con fuertes precipitaciones, relámpagos y truenos. La nube Cumulonimbus madura tiene una parte superior plana distintiva en forma de yunque. Descripción: La nube Cumulonimbus (Cb) se forma cuando se cumplen tres condiciones: Debe haber una profunda capa de aire inestable. El aire debe ser cálido y húmedo. Un mecanismo de activación debe hacer que el aire cálido y húmedo se eleve: Calentamiento de la capa de aire cercana a la superficie. Levantamiento del suelo que fuerza el aire hacia arriba (levantamiento orográfico). Un frente que fuerza el aire hacia arriba. Una nube Cumulonimbus se desarrolla en tres fases distintas: Fase de construcción. Una bolsa de aire caliente comienza a ascender como resultado de uno de los factores desencadenantes mencionados anteriormente. A medida que el aire húmedo asciende, se satura, se forman nubes y el calor latente liberado a medida que la humedad se condensa, calienta aún más el aire y continúa ascendiendo. El aire dentro de la nube es más cálido que el aire fuera de ella y se aspira más aire hacia la nube desde la base y los lados. La nube crece en altura rápidamente, más rápido de lo que muchos aviones pueden ascender, extendiéndose desde la superficie hasta una gran altura, a veces hasta la tropopausa. A medida que la temperatura del aire ascendente cae por debajo del punto de congelación, las gotas de agua se enfrían mucho y se unen para volverse cada vez más grandes. Fase Madura. A medida que la parte superior de la nube alcanza grandes alturas, la precipitación comienza a caer. La lluvia, la nieve y/o el hielo (granizo) que caen enfrían el aire circundante creando corrientes descendentes. La fricción entre las partículas de hielo que descienden a través de la nube y las partículas de hielo que son transportadas por las corrientes ascendentes crea una carga estática en la nube con la parte superior de la nube con una carga positiva y la parte inferior de la nube con una carga negativa. Eventualmente, la diferencia de potencial es tan grande que se producen poderosas descargas eléctricas (Relámpagos), acompañadas de Truenos. La parte superior de la nube comienza a aplanarse y Cirrus, como una nube, que consiste en cristales de hielo, se extiende creando una forma distintiva de yunque. Fase de disipación. El efecto de enfriamiento de las corrientes descendentes en el aire debajo de la nube reduce la fuerza de las corrientes ascendentes hasta que las corrientes ascendentes finalmente se detienen y la nube inferior comienza a disiparse. La nube superior permanecerá durante algún tiempo después. El ciclo activo de la celda Cb dura poco más de una hora, pero muchas tormentas eléctricas contienen varias celdas Cb activas en varias etapas de desarrollo, lo que significa que una tormenta puede durar varias horas y extenderse sobre un área extensa. Las celdas activas a menudo están incrustadas en una masa de nubes más grande que consta de restos de celdas en descomposición, así como otros tipos de nubes en varios niveles. Esto puede hacer que las celdas activas sean muy difíciles de detectar visualmente y se requiere un uso adecuado del radar para evitar el clima activo de manera segura. Tipos de Cumulonimbus Convección: Provocado por el calentamiento de la capa de aire cercana a la superficie. Este tipo de Cb se forma comúnmente al final de la tarde después del pico de calentamiento diurno. Las tormentas eléctricas de este tipo ocurren a diario en muchas áreas de los trópicos. Las tormentas suelen ser células Cb individuales en lugar de grupos de células y, por lo tanto, generalmente se pueden evitar volando alrededor